Section-A (Compulsory Question)

(i) Using definition of limit, prove that :

$$
\operatorname{Lt}_{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

[Hint : Question 3 (i) at Page 15 of Spectrum Differential Calculus]
(ii) Find the fourth derivative of $x^{3} \log x$.
[Hint : Question 1 (d) at Page 108 of Spectrum Differential Calculus]
(iii) Evaluate : $\operatorname{Lt}_{x \rightarrow 1} \frac{\log x}{x-1}$.
[Hint : Question $1(v)$ at Page 160 of Spectrum Differential Calculus]
(iv) State the Taylor's Theorem (with Lagrange's form of Remainder).
[Hint : Art-9 at Page 198 of Spectrum Differential Calculus]
(v) Examine for concavity and convexity the curve $y=x^{3}$.
[Hint : Question 6 at Page 244 of Spectrum Differential Calculus]
(vi) Define oblique asymptote.
[Hint : Definition at Page 249 of Spectrum Differential Calculus]
(vii) What are the necessary and sufficient conditions for any point on the to be multiple point ?
[Hint : Result of Art-4. at Page 278 of Spectrum Differential Calculu (viii) If $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
[Hint : Question 4 at Page 427 of Spectrum Differential Calcu

Section-B

Unit-I

2. (a) Let : $f(x)\left\{\begin{array}{cc}3, & \text { if } x \leq 2 \\ a x^{2}+b x+1, & \text { if } 2<x<3 \\ 7-a x, & \text { if } x \geq 3\end{array}\right.$

Determine the constants a and b so that $f(x)$ may be continuous for all x
[Hint : Question 33 at Page 74 of Spectrum Differential Calcu
(b) Prove that every real valued function, which is derivable at a point domain, is also continuous at that point. Is its converse true ?
[Hint : Art-3 at Page 82 of Spectrum Differential Calcui-
3. (a) $\sqrt{x}+\sqrt{y}=\sqrt{a}$, find the value of $\frac{d^{2} y}{d x^{2}}$ at $x=a$.
[Hint : Example 13 at Page 104 of Spectrum Differential Calculu
(b) If $y=\left(\sin ^{-1} x\right)^{2}$, find $y_{n}(0)$.
[Hint : Example 5 at Page 134 of Spectrum Differential Calcult

Unit-II

4. (a) Find the values of constants a and b so that :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}
$$

(b) State and prove Rolle's Theorem.
[Hint : Art-2 at Page 179 of Spectrum Differential Calculus]
(a) Use Lagrange's mean value theorem to prove that :

$$
1+x \leq e^{x} \leq 1+x e^{x} \forall x \geq 0
$$

[Hint : Example 1 at Page 216 of Spectrum Differential Calculus]
(b) Use Maclaurin's theorem with Lagrange's form of remainder to expand $\sin x$ as for the nth term in terms of ascending powers of x.
[Hint : Example 8 at Page 209 of Spectrum Differential Calculus]

Unit-III

(a) Determine the interval in which the curve $y=3 x^{5}-40 x^{3}+3 x-20$ is concave upwards or downwards.
[Hint : Question $12(i)$ at Page 244 of Spectrum Differential Calculus]
(b) Prove that the curvature of a circle is constant and is equal to the reciprocal of the radius.
$\left(6^{1 / 2}, 7\right)$
[Hint : Art-3 at Page 317 of Spectrum Differential Calculus]
(a) Find all the asymptotes of the curve $x^{3}+y^{3}-3$ a $x y=0$.
[Hint : Example 3 at Page 257 of Spectrum Differential Calculus]
(b) Examine the curve $x^{3}+2 x^{2}+2 x y-y^{2}+5 x-2 y=0$ for a double point and show that it is a cusp.
[Hint : Example 7 at Page 287 of Spectrum Differential Calculus]

Unit-IV

8. (a) Discuss the continuity of the function $f(x, y)$ defined by :

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & , \quad(x, y) \neq(0,0) \\
0 & , \quad(x, y)=(0,0)
\end{array}\right.
$$

at origin.
(b) If $u=\tan ^{-1}\left(\frac{x^{2}-y^{2}}{x+y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u$.
[Hint : Question 5. (i) at Page 402 of Spectrum Differential Calcul us
9. (a) Find the maximum and minimum value of $x^{2}+y^{2}$ subject to the conditiun

$$
3 x^{2}+4 x y+6 y^{2}=140 .
$$

[Hint : Example 1 at Page 419 of Spectrum Differential Calculu]
(b) Show that the functions:

$$
u=\frac{x}{y-z}, v=\frac{y}{z-x}, w=\frac{z}{x-y}
$$

are not independent of one another. Also find the relation between them.
[Hint : Example 3 at Page 438 of Spectrum Differential Calculu]

Paper: MATH202TH

|Maximum Marks : 70
Time: 3 Hours|
Note: Section-A is compulsory. In Section B attempt one questions each
form I nits I. II. III and IV
SECTION A
(Compulsory Question)

1. Do as directed

(i) Let Q , be the set of all positive rational numbers and * a binary operation on Q_{+}defined by $a^{*} b=\frac{a b}{3}$. The inverse of ' a ' is
(ii) Define order of an element of a group G .
(iii) If H and K are finite subgroups of a group G , then $\mathrm{O}(\mathrm{HK})=$
(iv) The index of every subgroup of a finite group $\ldots \ldots \ldots$ the order of the group.
(v) Every quotient group of cyclic group is cyclic. (True/False) (vi) State first theorem of Homomorphism.
(vii) Define Integral domain.
(viii) An arbitrary intersection of subrings is subring.
$(2 \times 8=16$

Section-B

Unit-I

2. (a) Let Q^{*} denotes the set of all rational numbers except Show that Q^{*} forms an infinite abelian group under the operation * defined by $a^{*} b=a+b+a b$, for all $a, b \in \mathrm{Q}^{*}$.
(b) Let a, b and x be any elements of a group G. Then prove that :
(i) $\mathrm{O}\left(a^{-1}\right)=\mathrm{O}(a) \mathrm{c}$
(ii) $\quad\left(x^{-1} a x\right)^{k}=x^{-1} a^{k} x$ for all $k \in \mathrm{I}$
(iii) $\mathrm{O}(a)=\mathrm{O}\left(x^{-1} a x\right)$
3. (a) Show that the set $\{1,2,3,4, \ldots \ldots \ldots p-1\}$, where p is a prime number forms a finite abelian group of order $p-1$ under the composition of multiplication modulo p
(b) If $a^{2} b=b^{2} a=b$ for all $a, b \in \mathrm{G}$ (a semi group), then prove that G is abelian.
(a) A non-empty subset H of a group G is a subgroup of G if and only if

$$
a \in \mathrm{H}, b \in \mathrm{H} \Rightarrow a b^{-1} \in \mathrm{H} .
$$

(h) The intersection of an arbitrary collection of subgroups of a group is again a subgroup of the group.
5. (a) Prove that every subgroup of a cyclic group is cyclic. Is the converse true?
(b) State and prove Lagrange's theorem.

Unit-III

6. (a) A subgroup H of a group G is a normal subgroup of G if and only if $g h g^{-1} \in H$ for every $h \in H$ and $g \in G$.
(b) If H is a subgroup of G such that $x^{2} \in H$ for all $x \in G$, then prove that H is a normal subgroup of G .
7. (a) Let N be a normal subgroup of a group G . Show that G / N is abelian if and only if for all $x, y \in \mathrm{G}, x y x^{-1} y^{-1} \in \mathrm{~N}$.
(b) The necessary and sufficient condition for a Homomorphism of a group G into a group G^{\prime} with kernel K to be isomorphism is that $\mathrm{K}=\{e\}$.

Unit-IV

8. (a) Show that the set $\mathrm{Z}_{n}=\{0,1,2, \ldots \ldots . n-1\}$ forms a finin commutative ring with unity, under addition and multiplication modulo n. $(n$ is a prime $>1)$.
(b) Prove that every field is an Integral domain.
9. (a) Prove that intersection of a family of subrings of a ring R is : subring of R.
(b) Prove that the sum and product of two ideals is again an ideal

Question No I is compulsory. Attempt one question each from Units I, II, III, IV Marks are given against the questions.

Section-A (Compulsory Question)

(1) If a, b, c, d are positive real numbers such that $a<b$ and $c<d$, then $a . c .<b . d$.

$$
\text { [Hint : Art-1.9 at Page } 10 \text { of Spectrum Real Analysis] }
$$

(ii) Solve : $2 x-3<5 x+3<2 x+3$.
[Hint : Question 1 (vii) at Page 21 of Spectrum Real Analysis]
(iii) State Archimedian property of real numbers.
[Hint : Statement of Art-1.25 at Page 47 of Spectrum Real Analysis]
(iv) State bounded and unbounded sequences.
[Hint : Art-2.2 at Page 71 of Spectrum Real Analysis]
(v) State Cauchy's second theorem on limits.
[Hint : Statement of Art-2.21 at Page 126 of Spectrum Real Analysis]
(vi) Show that the series $1^{2}+2^{2}+3^{2} \ldots . .+n^{2}+\ldots \ldots$ diverges to ∞.
(vii) Find the radius of convergence of the power series $\sum\left(1+\frac{1}{n}\right)^{n^{2}} x^{\prime \prime}$
|Hint : Example 4 at Page 306 of Spectrum Real Atalja (viii) State M_{n}-test for uniform convergence.
|Hint: Statement of Art-4.7 at Page 256 of Spectrum Real Analjs

Section-B

Unit-I

2. (a) Show that $\sqrt{7}$ is not a rational number.

[Hint : Question 3 at Page 4 of Spectrum Real Ana

(b) Solve: $\frac{7 x+5}{x-3}<2$.
[Hint : Question 3 (i) at Page 21 of Spectrum Real Anal
3. (a) For what values of x is $x^{2}-x-30>0$?
[Hint : Question 5 (i) at Page 41 of Spectrum Real Analysis]
(b) Find g.l.b. and l.u.b. for $\left\{\sin ^{2} x+\cos ^{4} x: x \in \mathrm{R}\right\}$.
[Hint : Example $5(i)$ at Page 52 of Spectrum Real Analysis]

Unit-II

4. (a) Prove that: $\mathrm{Lt}_{n \rightarrow \infty} \sqrt[n]{a}=1 \quad \forall a>0$.
[Hint : Art-2.17 (ii) at Page 98 of Spectrum Real Analysis]
(b) State and prove Cauchy's first theorem on limits.
[Hint ()uection 2 at Page 105 of Spectrum Real Analysis]
(h) Show that the sequence $\left\{\begin{array}{cc}2 n & 9 \\ 3 n+1\end{array}\right\}$ is monotonically increasing.
[1Hint: Question $2(f)$ at Page 121 of Spectrum Real Analysis]

Inil-III

(a) Show that $\sum(-1)^{n} \frac{n}{n+1}$ oscillates finitely.
[Hint : Question $4(i)$ at Page 180 of Spectrum Real Analysis]
(h) Discuss the convergence or divergence of the series $\sum \frac{1}{n(n+1)}$.
$\left(6^{1 / 2}, 7\right)$
[Hint : Question 3 (iv) at Page 197 of Spectrum Real Analysis]
(a) Discuss the convergence of the series $\sum\left(\sqrt[3]{n^{2}+1}-\sqrt[3]{n^{2}-1}\right)$.
[Hint : Question 7 (ii) at Page 198 of Spectrum Real Analysis]
(b) Discuss the divergence of the series:

$$
\begin{equation*}
\frac{1}{2}+\frac{1.3}{2.4}+\frac{1.3 .5}{2.4 .6}+\ldots \ldots \tag{61/2,7}
\end{equation*}
$$

[Hint : Question 1 at Page 243 of Spectrum Real Analysis]

Unit-IV

(a) Show that the sequence $\left\{f_{n}\right\}$ where :

$$
f_{n}(x)=\frac{x}{1+n x^{2}}, x \in \mathrm{R}
$$

converges uniformly on any closed interval.

Attempt five questions in all, choosing one question from each of the Units I, II, III and IV in Section-B. Section-A is compulsory.

Section-A (Compulsory Question)

(i) Define vector product of four vectors.

[Hint : Art-12 at Page 41 of Spectrum Vector Calculus]

(ii) What is the volume of a tetrahedron whose coterminous edges \vec{a}, \vec{b} and \vec{c} ?

[Hint : Art-8 (a) at Page 25 of Spectrum Vector Calculus]

(iii) Prove that $\operatorname{div} \vec{r}=3$.
[Hint : Example I (i) at Page 113 of Spectrum Vector Calculus)
(iv) Define solenoidal vector.
[Hint : Definition at Page $|1|$ of Spectrum Vector Calculus]
(v) Find the value of x, y, z if $\mathrm{P}(\rho, \theta, z)$ are the polar cylindrical co-ordinates of $\mathbf{P}(x, y, z)$.
(vi) Explain the term curvilinear co-ordinates of a point.
(i) Define Triangular Matrix and its types.

[Hint : Definition at Page 3 of Spectrum Matrices]

(ii) Examine the consistency of the system of equations :

$$
\begin{array}{r}
x+2 y=2 \\
2 x+3 y=3
\end{array}
$$

[Hint : Question 1 (i) at Page 54 of Spectrum Matrices]
(iii) Determine the rank of the matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5
\end{array}\right]
$$

[Hint : Question 5 at Page 89 of Spectrum Matrices]
(iv) By using elementary row transformation, find the inverse of the matrix

$$
A=\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]
$$

(v) Define characteristic equation of a matrix.

|Hint : Definition at Page 184 of Spectrum. id

(vi) Define coordinates of a vector relative to the basis of a vector space.
[Hint : Definition at Page 274 of Spectrum
(vii) Define Translation Mapping.
[Hint : Definition at Page 291 of Spectrum
(viii) Find the matrix representation for the projection

$$
\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2} \text { defined by } \mathrm{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

[Hint : Art-8.10 (i) at Page 314 of Spectrum)

$$
(\mathbf{8} \times \mathbf{2}=16)
$$

Section-B

(Unit-I)

2. (a) Show that every square matrix can be expressed in one and only one way as? sum of a Hermitian and a Skew-Hermitian matrix.

|Hint : Example 3 at Page 20 of Spectrum Matrices

(b) Find the rank of the matrix :

$$
A=\left[\begin{array}{rrrr}
0 & 6 & 6 & 1 \\
-8 & 7 & 2 & 3 \\
-2 & 3 & 0 & 1 \\
-3 & 2 & 1 & 1
\end{array}\right]
$$

In Section-A all questions are compulsory. In Section-B each Unit contains two questions and tempt one question from each of these Units.

Section-A
 (Compulsory Question)

(i) Define Basic Feasible Solution (BFS).
(ii) Define Balanced Transportation Problem.
(iii) Explain how an unbalanced transportation problem can be converted into balanced transportation problem.
(iv) Write a brief note on VAM to solving transportation problem.
(v) What is an assignment problem ?
(vi) Explain the difference between a transportation and an assignment problem.
(vii) What is two-person zero sum game?
(viii) What do you mean by dominance principle?

Section-B

Unit-I

(a) Find the IFS of the transportation problem with the help of North-West comer method:

Market

(b) Describe the transportation problem and give its mathematical model.
(a) Find out the initial basic feasible solution by applying least cost method :

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Supply
$\mathbf{1}$	10	2	20	11	15
$\mathbf{2}$	12	7	9	20	25
$\mathbf{3}$	4	14	16	18	10
Demand	4	16	15	15	

(b) With reference to the transportation problem define :
(i) Feasible solution
(ii) Optimal solution
(iii) Non-degenerate basic feasible solution
(iv) Degenerate basic feasible solution

Unit-II

(a) Solve the transportation problem for IFS by Vogel's approximation method:

	C_{1}	C_{2}	C_{3}	C_{4}	Supply
W_{1}	14	28	20	16	60
W_{2}	14	24	22	12	60
W_{3}	10	30	16	18	60
Demand	40	50	40	60	

(b) Explain the technique used for solving a transportation problem and testing its optimality.
5. (a) Solve the transportation problem to maximize profit :

Destination	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Supply
Origin	40	25	22	33	200
A	44	35	30	30	60
C	38	38	28	30	140
Demand	80	40	120	60	

(b) Explain Vogel's approximation method to find initial basic feasible solution in transportatio problem.
(a) Solve the game by dominance method:

Player B

(b) Solve the game by using graphic method whose payoff matrix is given :

